be separated and purified by vacuum distillation and they do not appear to isomerize on heating.

Dipole moment measurements form the main basis of our structural assignments of the isomers of VII. The locking of the ring by equatorial methyl groups in these compounds offers the advantage that dipole moment contributions from other conformers are negligible. Furthermore, since the P=O moment exceeds by a factor of at least two that of a PNMe₂ or POMe group,8 the overall moments of VIIa and IXa should be comparable but larger than those of VIIb and IXb and this is confirmed in Table I. That the

Table I. Dipole Momentsa and 31P Chemical Shiftsb of Cyclic Phosphorus Compounds

Compd	μ, D	δ ³¹ P
IXa	6.11 ± 0.05	+7.06
IXb	4.69 ± 0.05	+4.98
VIIa	5.80 ± 0.1	-3.49
VIIb	4.05 ± 0.1	-6.58

^a Measured at 25° in benzene using the apparatus and procedure described in A. C. Vandenbroucke, R. W. King, and J. G. Verkade, Rev. Sci. Instrum., 39, 558 (1968). b Measured in benzene relative to 85% H₃PO₄.

stereochemistries of the comparison compounds IXa and b are as shown is fixed by the established 1, 2 configurations of Ia and Ib and the conclusion that oxidation of cyclic phosphorus systems proceeds with retention of configuration. Since the same oxidation procedure produced Xa and Xb from IIa and IIb, their stereochemistries at phosphorus are also established with considerable firmness. If the reasonable assumption can be made that IIIa,b oxidized with retention of configuration at phosphorus, then VIIb (and by implication VIIIb) is thermodynamically more stable than the a isomer. This conclusion arises from the observation of a 10:1 IIIb to IIIa ratio in the first step of the equilibrium process represented in reaction 1. That the 1:10 ratio of IIIa to IIIb is very likely the equilibrium ratio is indicated by the production of this ratio in two different reactions (1 and 2) carried out at rather different temperatures. Moreover, the ratio did not change upon heating to 120° for 18 hr nor on vacuum distillation on a spinning band column.

Additional strong support for the above configurational assignments of VIIa,b and IXa,b comes from the lanthanide-induced pmr shifts of H₁ and H₂ in the isomers of VIII and X. Because these particular protons apparently experience greater downfield shifts when the P=O group is axial, 2,11 such deshielding

$$(O)R_{\mathbf{r}}P$$
 O
 $H_{\mathbf{r}}$

should be more pronounced in VIIIb and Xb than in their a counterparts and the data in Table II confirm

The ³¹P chemical-shift progression to lower applied

Table II. Lanthanidea Shift Behavior of Selected Protons in Cyclic Phosphorus Compounds^b

Compd	$\Delta \delta \mathbf{H}_{\mathbf{l}^c}$	$\Delta \delta \mathbf{H}_2^c$
VIIIa	2.3	2.3
VIIIb	5.3	4.6
Xa	3.3	3.0
Xb	5.1	4.5

^a Tris(1,1,1,2,2,3,3 - heptafluoro-4,6-octanedione)europium(III) (Eu(fod)₃). ^b The downfield increments were obtained by comparing spectra of CDCl₃ solutions of these compounds with CDCl₃ solutions 0.2 M in compound and 0.1 M in Eu(fod)₃. c Relative to

fields from IXa and VIIa to their respective b isomers (Table I) seems to parallel the change in configuration at phosphorus.

In contrast to pentavalent phosphorus a and b isomers where X = oxygen and R = aryl, alkyl, or alkoxy, the P=0 group prefers the axial position when R =NMe₂. In preliminary acid-catalyzed hydrolysis experiments on VIIa and VIIb, for instance, VIIb is observed by pnmr spectroscopy to convert to VIIa while VIIa hydrolyzes without apparent isomerization. Pnmr and stereospecific reaction studies have led to the conclusion that the equatorial NR₂ axial P=O stereochemistry is also preferred for relatively nonrigid 1,3,2-dioxaphosphorinanes in solution^{5,12,13} and preliminary X-ray work indicates that the same is true in the solid state. 14

Acknowledgment. The authors thank the National Science Foundation for generous support of this work in the form of a grant to J. G. V. and a Traineeship to J. A. M.

(12) R. S. Edmundson and E. W. Mitchell, J. Chem. Soc. C, 3033 (1968).

(13) H. Horton and W. Wadsworth, Jr., J. Amer. Chem. Soc., 92, 3785 (1970).

(14) W. Wadsworth, Jr., private communication.

J. A. Mosbo, J. G. Verkade*

Department of Chemistry, Iowa State University Ames, Iowa 50010 Received June 14, 1972

Biogenetic-Type Total Synthesis. 24,25-Dihydrolanosterol, 24,25-Dihydro- $\Delta^{13(17)}$ -protosterol, Isoeuphenol, (−)-Isotirucallol, and Parkeol

Sir:

In the biogenesis of the euphol and lanosterol classes, it is assumed that enzyme-controlled all-chair folding of squalene 2,3-oxide (1)1 prefigures generation of the former type, while the chair-boat-chair conformation determines production of the latter category.² In order to pursue total synthesis in this area and also realize the closest simulation so far of the biological cyclization process, we have sought to employ the parallel, abiological reaction of a selected oxide 1 variant.³ We now report the nonenzymic transforma-

(1) For a review dealing with the function of squalene 2,3-oxide in nature, see E. E. van Tamelen, Accounts Chem. Res., 1, 111 (1968).

⁽⁸⁾ C. P. Smyth, "Dielectric Behavior and Structure," McGraw-Hill.

New York, N. Y., 1955.
(9) D. Z. Denney, G. Y. Chen, and D. B. Denney, J. Amer. Chem. Soc., 91, 6838 (1969).

⁽¹⁰⁾ W. G. Bentrude and J. H. Hargis, ibid., 92, 7136 (1970).

⁽¹¹⁾ K. C. Yee and W. G. Bentrude, Tetrahedron Lett., 2775 (1971).

⁽²⁾ For the basic stereochemical interpretation, see (a) G. Stork and A. W. Burgstahler, J. Amer. Chem. Soc., 77, 4068 (1955), and (b) A. Eschenmoser, L. Ruzicka, O. Jeger, and D. Arigoni, Helv. Chim. Acta, 38, 1890 (1955).

HO

3

H

$$\beta$$
-2a, R = (CH₂)₂CH(CH₃)₂

7a, R = CH₂CH = C(CH₃)₂

HO

5, R = (CH₂)₂CH(CH₃)₂
8, R = CH₂CH = C(CH₃)₂

tion of the totally synthetic epoxide epimer (*)-2a—with concurrent stereorational generation of five new asymmetric centers—to not only isoeuphenol (3), presumably reflecting the polychair conformation (α -2a) of reacting epoxide, but also 24,25-dihydro- $\Delta^{13(17)}$ -protosterol (4) and 24,25-dihydroparkeol (5), apparently arising as a consequence of chair-boat-chair folding (β -2a), cyclization, and (in the case of 5) termination by a CH₃-H migration sequence akin to that occurring in the biological process. Abiological tricyclization of 2b, the C-3(*) epimer of 2a, yields only (—)-isotirucallenol (6), the enantiomer of naturally derived material, 4 again a consequence of the all-chair arrangement. Similarly, synthetic epoxide 7a affords parkeol (8), while 7b, the C-3(*) epimer of 7a, gives rise to (—)-isotirucallol (9).

The cyclohexenyl alcohol 10a, prepared from (S)-(-)-

(3) For earlier nonenzymic synthesis and polycyclization of terpenoid terminal epoxides, see inter alia (a) F. E. van Tamelen and T. J. Curphey, Tetrahedron Lett., 121 (1962); (b) E. E. van Tamelen, A. Storni, E. J. Hessler, and M. Schwartz, J. Amer. Chem. Soc., 85, 3295 (1963); (c) E. E. van Tamelen, J. Willett, M. Schwartz, and R. Nadeau, ibid., 88, 5937 (1966); (d) E. E. van Tamelen and R. G. Nadeau, ibid., 89, 176 (1967); (e) E. E. van Tamelen, G. M. Milne, M. I. Suffness, M. C. Rudler-Chauvin, R. J. Anderson, and R. Achini, ibid., 92, 7202 (1970).

(4) Isotirucallol and isotirucallenol (Δ^{24} -dihydroisotirucallol) are, respectively, the C-20 epimers of isoeuphol and isoeuphenol (Δ^{24} -dihydroisoeuphol).

(5) Reaction mechanism detail is not known, and products 3, 4, 5, 6, 8, and 17 may result from cyclization initiated on and controlled by an entirely preformed all-chair or chair—boat-chair acyclic conformer, or they may originate by sequential appearance of appropriate individual conformational units, each of which precedes a discrete cyclization leg.

limonene as previously described, was converted by the Lee method (93%) to the corresponding bromide 10b [bp 70° (0.4 mm); nmr δ 0.99 (d, 3, J = 6.5 Hz, CH_3CH), 1.62 (s, 3, $CH_3C=C$), 3.40 (q of d, 2, J_{AB} = 13 Hz, J_{AX} = 4 Hz, J_{BX} = 6 Hz, CH_2Br)], which, on treatment with malonic ester anion at 80° in DMSO for 1 hr, gave rise to the diester 10c (66%) [bp 120° (0.1 mm); nmr δ 0.86 (d, 3, J = 6.5 Hz, CH_3CH), 3.47 (d of d, 1, J_{AX} = 6 Hz, J_{AY} = 9.5 Hz, $CH(COOMe)_2$), 3.73 (s, 6, $(COOCH_3)_2$)]. Decarbomethoxylation of 10c was carried out (81%) by heating with NaCN^{8,9} in DMSO solution at 130°, and the resulting monoester was quantitatively reduced by LiAlH₄ to the corresponding alcohol 10d [ir (film) 3320 cm⁻¹; nmr δ 0.85

 $(d, 3, J = 6 \text{ Hz}, CH_3CH), 1.63 \text{ (br s, 3, CH}_3C=C),$ 3.61 (t, 2, J = 6.5 Hz, CH_2OH), 5.37 (br, 1, C=CH)]. On oxidation with m-chloroperbenzoic acid in CH₂Cl₂ at 0° , 10d was transformed (95%) to a 1:2.2 mixture of $\alpha:\beta$ epoxides 11a (separable by glc, 3% OV-225, 110°) [nmr δ 0.82 and 0.83 (two d, 3, C H_3 CH of diastereomers), 1.30 (s, 3, C H_3 C-O), 2.97 (d, J = 5 Hz, H(c-C(O)C of β -epoxide), 3.03 (br s, HC-O of α -epoxide), 3.60 (t, 2, J = 6 Hz, CH₂ OH)], which mixture was further oxidized by Collins reagent¹⁰ in CH_2Cl_2 to the aldehyde 11b [ir (film) 2710, 1720 cm⁻¹; nmr δ 0.81 and 0.83 (two d, J = 6 Hz, CH_3CH), 1.29 (s, 3, CH_3C-O), 9.74 (t, 1, J = 1.5 Hz, CHO)]. By means of a Wittig reaction with triphenylphosphonium isopropylide, aldehyde 11b was converted to diene monoxide mixture 11c (56% from 5a) [bp 90° (bulb-to-bulb) (0.04 mm); nmr δ 1.30 (s, 3, CH_3C-O), 1.60 and 1.68 (two s, 6, $(CH_3)_2$ -C=C), 5.08 (br t, 1, J = 7 Hz, C=CH)]. Treatment of the epoxide mixture 11c with 3% HClO4 in THF at room temperature for 3 hr effected conversion (92%) to an 8.4: 1 (diaxial: diequatorial hydroxyls) mixture of diastereoisomeric trans glycols (12) (separable by column chromatography on silica) [nmr: diaxial OH $\delta 0.86 \text{ (d, 3, } J = 6 \text{ Hz, C}H_3\text{CH)}, 1.22 \text{ (s, 3, C}H_3\text{COH)},$ 3.57 (br s, 1, HCOH); diequatorial OH δ 0.83 (d, 3, $J = 6 \text{ Hz}, CH_3CH), 1.15 \text{ (s, 3, CH}_3COH), 3.50 \text{ (d of }$ d, 1, J = 4 Hz, J = 11 Hz, HCOH)], which mixture was subjected to sodium metaperiodate in THF-H₂O for 18 hr at 60°. The resulting ketoaldehyde [ir

(6) B. A. Pawson, H-C. Cheung, S. Gurbaxani, and G. Saucy, J. Amer. Chem. Soc., 92, 336 (1970).

(7) J. B. Lee and T. J. Nolan, Can. J. Chem., 44, 1331 (1966).
(8) See A. P. Krapcho, G. A. Glynn, and B. J. Grenor, Tetrahedron Lett., 215 (1967), for examples of decarboethoxylation by this means.
We found that milder conditions were necessary to effect efficiently the

(9) It is convenient to convert bromide 10b to monoester by carrying out in DMSO sequential alkylation and decarbomethoxylation in a "one-flask" reaction.

(10) J. C. Collins, W. W. Hess, and F. J. Frank, Tetrahedron Lett., 3363 (1968).

13a,
$$X = OH$$

b, $X = Br$
c, $X = (n - C_4H_9)_3P$, $+Br$

(film) 2270, 1715 cm⁻¹; nmr δ 2.12 (s, 3, CH₃CO), 9.74 (t, 1, J = 1.5 Hz, CHO)] was heated in benzene at reflux with piperidine–acetic acid and thereby transformed (63%) to the cyclopentenaldehyde, which was reduced directly by means of NaBH₁ to the alcohol 13a (63% from 12) [bp 95° (0.04 mm); nmr δ 0.83 (d, 3, J = 6.5 Hz, CH₃CH), 3.99 (br, d, 1, J = 12 Hz, CHOH), 4.26 (d, 1, J = 12 Hz, CHOH)].

After formation⁷ of bromide 13b from alcohol 13a, coupling was carried out, as previously described, 11 between trisnoracetal 14¹² and the ylide derived by

Br + 13c
$$\xrightarrow{C_1H,L_1}$$
 + 15a, $X = (n - C_4H_9)_3P^+, Br^-$ b, $X = H$

treatment with phenyllithium of phosphonium salt 13c. The coupling product $15a^{13}$ (29%) [nmr δ 0.97 (br t, 9 J = 4 Hz, CH_3CH_2O), 4.85 (t, 1, J = 4.5 Hz, OCHO)] was reduced with lithium-ethylamine to tetraeneacetal 15b (80%) [nmr δ 0.90 (d, 3, J = 7 Hz, CH_3CH), 3.89 (m, 4, OCH_2CH_2O), 4.84 (t, 1, J = 4.5 Hz, OCHO), 5.11 (br m, 3, C=CH)]. The aldehyde obtained by perchloric acid hydrolysis of 15b (91%) was converted by diphenylsulfonium isopropylide¹⁴ (80%) to epoxide 7, presumably a ca. 50:50 mixture of C-3 epimers (*) (7a,b) inseparable by chromatographic means.

Exposure of epoxide 7 to 2.5 equiv of SnCl₄ in CH₃NO₂ at 0° for 1.5 hr resulted in formation of a product complex from which there was isolated by means of a combination of tlc (silica; three elutions with 7% EtOAc-petroleum ether, R_f 0.34) and preparative vpc (6-ft 3% OV-17, 260°) methods, (-)-isotirucallol (9) (18%): ¹⁵ mp 140-143° (MeOH-H₂O) [ir (CCl₄) 3640, 2950, 1450, 1370, 1020 cm⁻¹; nmr (C₆D₆) δ 0.81, 0.91, 1.04, 1.10, 1.18 (ratio 2:1: 1.5:0.5:1), 1.60 and 1.70 (br s, 6, CH₃C=C), 3.05 (br m, 1, HCOH), 5.25 (m, 1, C=CH); mass spectrum (70 eV) calcd for C₃₀H₅₀O, 426.3860; found, 426.3838]. Acid-catalyzed isomerization (1% HClO₄ in HOAc,

55° for 12 hr) of natural (+)-tirucallol acetate afforded (+)-isotirucallol acetate; the latter, when hydrolyzed, gave (+)-isotirucallol, the glc and mass spectral properties of which were identical with those of (-)isotirucallol resulting from cyclization of 7. Identification as 9 was confirmed by catalytic hydrogenation $(10\% \text{ Pd/C-C}_2\text{H}_5\text{OH})$ to (-)-isotirucallenol (6), mp 142-144° (MeOH-H₂O), indistinguishable from that obtained by cyclization of epoxide 2b (see below). Admixture with (+)-isotirucallenol (mp 143.5-145.5°)16 gave melting point depression (range 120-130°). A second preparative vpc product, further purified by AgNO₃-silica tlc, was identified as parkeol (8) $(2\%)^{15}$ by vpc, gas chromatographic-mass spectral, ir, and mixture melting point comparison of its acetate (mp 161-163°) with authentic parkeyl acetate (mp 162-165°), as well as hydrogenation (10% Pd/C) to Δ^{24} -dihydroparkeol; identical (vpc, gas chromatographymass spectra) with an authentic sample of 5.

In order to obtain dihydroepoxide 2, the cyclopentenyl alcohol 13a was selectively hydrogenated (5% Pt/C) to allylic alcohol 16a (90%) [bp 75° (bulb-to-bulb) (0.1 mm); nmr (CDCl₃) δ 0.85 (d, 6, J = 6 Hz, (CH₃)₂-CH), 0.90 (d, 3, J = 6 Hz, CH₃CH), 3.98 (br d, 1, J = 12 Hz, CHOH), 4.30 (d, 1, J = 12 Hz, CHOH)], and the corresponding bromide 16b³ was subjected to a reductive coupling sequence similar to ones described elsewhere. Attachment of the terminal epoxide unit, as above with 15b, completed the synthesis of the 2a,b mixture [nmr (CDCl₃) 1.25 and 1.28 (two s, 6, (CH₃)₂C-O), 2.70 (t, 1, J = 6 Hz, HC-O].

As with 7a,b, cyclization of epoxide 2a,b, followed by tle separation of products, yielded a tetracycle fraction $(R_{\rm f}~0.23;~30\%~{\rm weight~recovery})$ comprising (vpc) isoeuphenol (3) (3.5%), 24,25-dihydro- $\Delta^{13(17)}$ -protolanosterol (4) (2%), and 24,25-dihydroparkeol (5) (3.5%), all from epoxide 2a, ¹⁵ and (-)-isotirucallenol (6) (43%) from epimer 2b. 15 After further purification by preparative vpc (6-ft 3% OV-17, 245°), the identity of 6 was established by ir, nmr, high- and low-resolution mass spectra, glc (three columns), and melting point comparison with an authentic specimen of (+)-isotirucallenol. 20 Isoeuphenol (3) from cyclization of 2a was identical with authentic material²¹ as indicated by vpc coinjections (3% OV-17, 3% OV-25, 3% OV-225) and gas chromatographic-mass spectral comparison. Synthetic dihydroparkeyl acetate (mp 173-175°) was indistinguishable from an authentic sample (mp 175- $176^{\circ})^{22}$ (mmp 173–175°; coinjection on 3% OV-17, 3% OV-25; identical gas chromatography-mass spectra). Likewise, dihydroprotolanosterol (4) proved to have the same vpc retention times (3% OV-17, 3% ov)OV-25) and gas chromatography-mass spectra as the authentic compound. 23 Since BF₃ · Et₂O-CH₃NO₂ treat-

⁽¹¹⁾ E. H. Axelrod, G. M. Milne, and E. E. van Tamelen, J. Amer. Chem. Soc., 92, 2139 (1970).

⁽¹²⁾ K. B. Sharpless, R. P. Hanzlik, and E. E. van Tamelen, ibid., 90, 209 (1968).

⁽¹³⁾ Because of difficulties in purification, a combustion analysis on the phosphonium salt was not attempted.

⁽¹⁴⁾ E. J. Corey, M. Jautelat, and W. Oppolzer, Tetrahedron Lett., 2325 (1967).

⁽¹⁵⁾ Yield based upon reaction of one epoxide epimer.

⁽¹⁶⁾ J. S. Mills, J. Chem. Soc., 2196 (1956).

⁽¹⁷⁾ E. E. van Tamelen, R. A. Holton, R. E. Hopla, and W. E. Konz, J. Amer. Chem. Soc., 94, 8228 (1972).

⁽¹⁸⁾ E. E. van Tamelen, M. P. Seiler, and W. Wierenga, *ibid.*, **94**, 8229 (1972).

⁽¹⁹⁾ All new compounds described in this paper gave satisfactory combustion analysis.

⁽²⁰⁾ J. S. Mills, J. Chem. Soc., 2196 (1956).

⁽²¹⁾ M. C. Dawson, T. G. Halsall, and R. E. H. Swayne, ibid., 590 (1953).

⁽²²⁾ W. Voser, M. Montavon, Hs. H. Gunthard, O. Jeger, and L. Ruzicka, Helv. Chim. Acta, 33, 1893 (1950).

^{(23) (}a) G. Visconti di Modrone, Ph.D. Thesis, ETH, Zurich, 1968; (b) T. Hattori, H. Igarashi, S. Iwasaki, and S. Okuda, *Tetrahedron Lett.*, 1023 (1969).

ment of authentic dihydro- $\Delta^{18(17)}$ -protolanosterol (4) (or its acetate)²⁴ resulted in formation (70–80%) of dihydroparkeol (5)²⁵ (or acetate), the realization of the same transformation (vpc and gas chromatographic—mass spectral comparisons) when synthetic tetracycle 4 was subjected to such conditions confirms its identification as 4. In that terpenoid 5 has been previously converted²⁶ to 24,25-dihydrolanosterol (17), the present work also constitutes a direct total synthesis of the latter natural product.²⁷

Although generation of either the 9,10 trans or cis rearrangement in the hydronaphthalene framework arising from polycyclization of terpenoid terminal epoxides has been previously observed, ²⁸ the formation of tetracycles 4, 5, and 8 from epoxides 2a and 7a represents the first *tri*cyclization featuring the 9,10 cis outcome and thus emerges as a close simulation of the biosynthetic conversion of squalene oxide to the presterol, and thence to the lanosterol level. The results described herein thus not only constitute total syntheses of tetracycles 3, 4, 5, 6, 8, and 17, but also suggest that biological chair-boat-chair construction rests on a palpable, purely chemical foundation, the function of the lanosterol cyclase enzyme being in part to optimize this particular folding-cyclization process.

Acknowledgment. Thanks are due to the National Science Foundation (GP23019) and the National Institutes of Health (GM10421) for financial assistance, Dr. J. Trudell for gas chromatographic-mass spectral data, Dr. L. Durham for nmr consultation, Professors D. Arigoni, ETH, and J. Kutney, University of British Columbia, for samples of natural products, and Dr. M. Suffness for cooperation in the synthesis of intermediate 10d.

(24) The observation that $SnCl_4-CH_3NO_2$ also effects, albeit in lower yield, conversion of 4 to 5 permits that 5 may be generated from 4 under the conditions when 4 is formed from 2.

(25) S. Uyeo, J. Okada, S. Matsunaga, and J. W. Rowe, Tetrahedron, 24, 2859 (1968).

(26) Despite the considerable difference in melting point from literature values and the unmistakable mass spectral retro Diels-Alder cleavage exhibited by the derived Δ^{1} -3-ketone indicative of a Δ^{7} double bond, the epoxide cyclization product reported by E. E. van Tamelen and J. W. Murphy, J. Amer. Chem. Soc., 92, 7204 (1970), is indistinguishable from dihydroparkeol (5).

(27) The synthesis of lanosterol from cholesterol was achieved by R. B. Woodward, A. A. Patchett, D. H. R. Barton, D. A. J. Ives, and

R. B. Kelly, ibid., 79, 1131 (1957).

(28) Cis and/or trans: E. E. van Tamelen, A. Storni, E. J. Hessler, and M. Schwartz, ibid., 85, 3295 (1963); E. E. van Tamelen and R. M. Coates, Chem. Commun., 13, 413 (1966); E. E. van Tamelen and J. P. McCormick, J. Amer. Chem. Soc., 91, 1847 (1969). Trans: E. E. van Tamelen and R. G. Nadeau, ibid., 89, 176 (1967); E. E. van Tamelen, G. M. Milne, M. I. Suffness, M. C. Rudler-Chauvin, R. J. Anderson, and R. S. Achini, ibid., 92, 7202 (1970). Cis: ref 17.

E. E. van Tamelen,* R. J. Anderson

Department of Chemistry, Stanford University Stanford, California 94305 Received June 12, 1972

Biogenetic-Type Total Synthesis. dl-Tetrahymanol

Sir:

Incorporating five carbocyclic rings and nine asymmetric centers, the protozoan metabolite tetrahymanol (1)^{1,2} presents a considerable challenge for

laboratory construction by efficient means. We have now completed a *dl*-tetrahymanol total synthesis—the first of a pentacarbocycle featuring ring formation solely by polyolefin cyclization methods—which comprises ten steps starting from farnesol (2), or seven steps from previously described, available starting material 3.^{3a}

Bicyclic bromide 4a, prepared by LiAlH₄ reduction of 3 to allyl alcohol followed by treatment with hydrobromic acid, 3b was used without purification to alkylate (THF for several hours in the range -35 to 20°) the anion of phenyl thioether 5,⁴ prepared by sequential

6a, $X' = SC_6H_5$; X = H

b, X' = H; X = H

 $c, X' = SC_6H_5; X = OCH_2C_6H_5$

 $\mathbf{d}, \mathbf{X}' = \mathbf{H}; \mathbf{X} = \mathbf{OAc}$

in situ treatment of trans,trans-farnesol with methyllithium, p-toluenesulfonyl chloride, and lithium thiophenoxide. The trans,trans alkylation product **6a** [nmr (CCl₄) δ 7.07 (5, s), 4.97 (3, m), 3.90 (1, m), 0.87 (12, m)] (65%) was reductively desulfurized (100%)⁴ with Li-C₂H₅NH₂ at -78° to a ca. 50:50 mixture of the desired 2,6,10,14-tetraene **6b** [nmr (CCl₄) δ 5.02 (3, m), 0.92 (3, s), 0.87 (3, s), 0.82 (3, s)] and the 2,6,11,14 isomer [nmr (CCl₄) δ 2.65 (2, d, J = 2 Hz)], separated by gc or preparative tle (AgNO₃-SiO₂). Presumably because of adverse steric influences in the environment of the Δ ¹⁴ tetrasubstituted bond, selective oxidative attack⁵ on the terminal Δ ² trisubstituted site

(5) E. E. van Tamelen and T. J. Curphey, ibid., 121 (1962).

⁽¹⁾ F. B. Mallory, J. T. Gordon, and R. L. Conner, J. Amer. Chem. Soc., 85, 1362 (1963).

⁽²⁾ Y. Tsuda, A. Morimoto, T. Sano, and Y. Inubushi, Tetrahedron Lett., 1427 (1965).

^{(3) (}a) G. Stork and A. W. Burgstahler, J. Amer. Chem. Soc., 77, 5068 (1955); (b) M. A. Schwartz, Ph.D. Dissertation, Stanford University, 1965.

⁽⁴⁾ J. F. Bielmann and J. B. Ducep, Tetrahedron Lett., 3707 (1969).